top of page

Multiomic spatial atlas shows deleted in malignant brain tumors 1 (DMBT1) glycoprotein is lost in colonic dysplasia

  • bgtaylor1
  • Jul 29
  • 2 min read

Logo for the National Institutes of Health

Date:

May 2025

PMID:

Category:

N/A

Authors:

Emily H Green, Subhag R Kotrannavar, Megan E Rutherford, Hannah M Lunnemann, Harsimran Kaur, Cody N Heiser, Hua Ding, Alan J Simmons, Xiao Liu, D Borden Lacy, M Kay Washington, Martha J Shrubsole, Qi Liu, Ken S Lau, Cynthia L Sears, Robert J Coffey, Julia L Drewes, Nicholas O Markham

Abstract:


Colorectal cancer (CRC) is responsible for over 900,000 annual deaths worldwide. Emerging evidence supports pro-carcinogenic bacteria in the colonic microbiome are at least promotional in CRC development and may be causal. We previously showed toxigenic C. difficile from human CRC-associated bacterial biofilms accelerates tumorigenesis in ApcMin/+ mice, both in specific pathogen-free mice and in gnotobiotic mice colonized with a defined consortium of bacteria. To further understand host-microbe interactions during colonic tumorigenesis, we combined single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and immunofluorescence to define the molecular spatial organization of colonic dysplasia in our consortium model with or without C. difficile. Our data show a striking bipartite regulation of Deleted in Malignant Brain Tumors 1 (DMBT1) in the inflamed versus dysplastic colon. From scRNA-seq, differential gene expression analysis of normal absorptive colonocytes at 2 weeks postinoculation showed DMBT1 upregulated by C. difficile compared to colonocytes from mice without C. difficile exposure. In contrast, our spatial transcriptomic analysis showed DMBT1 dramatically downregulated in dysplastic foci compared with normal-adjacent tissue. We further integrated our datasets to generate custom colonic dysplasia scores and ligand-receptor mapping. Validation with immunofluorescence showed DMBT1 protein downregulated in dysplastic foci from three mouse models of colonic tumorigenesis and in adenomatous dysplasia from human samples. Finally, we used mouse and human organoids to implicate WNT signaling in the downregulation of DMBT1 mRNA and protein. Together, our data reveal cell type-specific regulation of DMBT1, a potential mechanistic link between bacteria and colonic tumorigenesis. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Acknowledgements:

The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute, or the National Institute of Health.


The Translational and Basic Science Research in Early Lesions (TBEL) Research Consortia is supported and funded by grants from the National Cancer Institute and the National Institutes of Health under the following award numbers:


Project Number:

Awardee Organization

U54CA274374

Fred Hutchinson Cancer Center

U54CA274375

Houston Methodist Research Institute

U54CA274370

Johns Hopkins University

U54CA274371

UT MD Anderson Cancer Center

U54CA274367

Vanderbilt University Medical Center


Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
bottom of page