top of page
bkgd-research-workgroups-original-003.jpeg
Data Science

Data Analysis Tools and Resources

The following resources and tools are provided by Dr. Liang Li and Dr. Lulu Shang. If you have question or need assistance, please contact us at TBEL-CDMC@mdanderson.org

Task

Approach

Tools

Applications

img-thumb-data-research-tool-001.png

Quality Control

Quality Control of Spatial Transcriptomics Data, Removing Ambient RNA Contamination.

img-thumb-data-research-tool-002.png

Batch Effect Removal

Harmony, ComBat, BBKNN

Correcting Batch effects across datasets.

img-thumb-data-research-tool-003.png

Wilcoxon Test in Seurat, RegionalST

Wilcoxon Test in Seurat, RegionalST

Identifying Differentially Expressed Genes Across Spatial Regions or Cell Types.

img-thumb-data-research-tool-004.png

Gene Set Enrichment Analysis

GSEA, gProfiler, fgsea, clusterProfiler, EnrichR

Functional Enrichment Analysis for Spatially Resolved Genes to Identify Biological Pathways.

img-thumb-data-research-tool-005.png

Gene Regulatory Network

SCENIC, GRNBoost2, GENIE3

Inferring Regulatory Networks to Identify Regulatory Relationships.

img-thumb-data-research-tool-006.png

Deconvolution

Cell2location, RCTD, CARD, SpatialDWLS,

BayesPrism

Deconvolution of SRT Data Using Paired scRNA-seq Data.

img-thumb-data-research-tool-007.png

CNV Inference

SpatialInferCNV, SPATA

Inference of CNVs from SRT Data

img-thumb-data-research-tool-008.png

Cell-Cell Interaction Analysis

COMMOT, NCEM, NicheDE, NicheNet

Inference of Cellular Interactions from SRT Data

img-thumb-data-research-tool-009.png

Cell Type Annotation

SingleR, scType, Seurat

Annotating Cell Types Based on Reference Datasets or Marker Gene Expression.

img-thumb-data-research-tool-010.png

Neighborhood Analysis

Squidpy, Giotto, SpaOTsc

Understanding Spatial Relationships and Clustering Between Cell Types and Tissue Regions.

img-thumb-data-research-tool-011.png

Dimension Reduction

SpatialPCA, PRECAST, PCA, NMF

Spatially Aware Dimension Reduction and Embedding for Downstream Analysis

img-thumb-data-research-tool-012.png

Spatial Domain Detection

BayesSpace, Louvain (Seurat), SpaGCN, BASS

Identifying Spatial Domains and Tissue Structures Using Spatial Relationships and Gene Expression.

img-thumb-data-research-tool-013.png

Spatially Variable Genes Detection

SPARK, SPARK-X, nnSVG, CELINA

Detecting Genes with Significant Spatial Expression Patterns, Including Cell Type-Specific Patterns.

img-thumb-data-research-tool-014.png

Multi-Omics Integration

SpatialGLUE, MOFA+, StabMap

Integrating Spatial Multi-Omics Data for Comprehensive Biological Insights.

img-thumb-data-research-tool-015.png

Trajectory Analysis

Monocle3, Slingshot, STREAM

Analyzing Developmental Trajectories or Pseudotime.

img-thumb-data-research-tool-016.png

Data Visualization

SpatialView, Seurat, Scanpy, Squidpy, Circos

Visualization of Spatial Transcriptomics Data in 2D/3D Contexts.

img-thumb-data-research-tool-017.png

Imputation and Alignment

CytoSPACE, Tangram, CellTrek, PASTA

Mapping Single-Cell RNA-seq Data onto Spatial Data for Alignment and High-Resolution Insights.

img-thumb-data-research-tool-018.png

Power Analysis and Sample Size

PoweREST

Calculating Statistical Power and Determining Sample Size for Spatial Transcriptomics Studies.

img-thumb-data-research-tool-019.png

Cell Segmentation

Baysor, SCS, DeepCell, Cellpose, StarDist

Identifying and Segmenting Individual Cells or Nuclei from Spatial Images.

img-thumb-data-research-tool-020.png

Morphology Integration

SpaGCN, iStar, METI

Integrating Morphological Information from H&E Images with spatial Transcriptomics.

bottom of page