top of page

Mapping the Core Senescence Phenotype of Primary Human Colon Fibroblasts

  • bgtaylor1
  • Nov 1, 2024
  • 2 min read

Logo for the National Institutes of Health

Date:

Feb 21, 2024

PMID:

Category:

N/A

Authors:

Namita Ganesh Hattangady, Kelly Carter , Brett Maroni-Rana, Ting Wang , Jessica Lee Ayers , Ming Yu, William M Grady

Abstract:


Advanced age is the largest risk factor for many diseases and several types of cancer, including colorectal cancer (CRC). Senescent cells are known to accumulate with age in various tissues, where they can modulate the surrounding tissue microenvironment through their senescence associated secretory phenotype (SASP). Recently, we showed that there is an increased number of senescent cells in the colons of CRC patients and demonstrated that senescent fibroblasts and their SASP create microniches in the colon that are conducive to CRC onset and progression. However, the composition of the SASP is heterogenous and cell-specific, and the precise senescence profile of colon fibroblasts has not been well-defined. To generate a SASP atlas of human colon fibroblasts, we induced senescence in primary human colon fibroblasts using various in vitro methods and assessed the resulting transcriptome. Using RNASequencing and further validation by quantitative RT-PCR and Luminex assays, we define and validate a 'core senescent profile' that might play a significant role in shaping the colon microenvironment. We also performed KEGG analysis and GO analyses to identify key pathways and biological processes that are differentially regulated in colon fibroblast senescence. These studies provide insights into potential driver proteins involved in senescence-associated diseases, like CRC, which may lead to therapies to improve overall health in the elderly and to prevent CRC.


Acknowledgements:

The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute, or the National Institute of Health.


The Translational and Basic Science Research in Early Lesions (TBEL) Research Consortia is supported and funded by grants from the National Cancer Institute and the National Institutes of Health under the following award numbers:


Project Number:

Awardee Organization

U54CA274374

Fred Hutchinson Cancer Center

U54CA274375

Houston Methodist Research Institute

U54CA274370

Johns Hopkins University

U54CA274371

UT MD Anderson Cancer Center

U54CA274367

Vanderbilt University Medical Center


Comentarios

Obtuvo 0 de 5 estrellas.
Aún no hay calificaciones

Agrega una calificación
bottom of page