top of page

Comprehensive isolation of extracellular vesicles and nanoparticles

  • bgtaylor1
  • Nov 13, 2024
  • 2 min read

Date:

13 March 2023

PMID:

Category:

N/A

Authors:

Qin Zhang, Dennis K. Jeppesen, James N. Higginbotham, Jeffrey L. Franklin & Robert J. Coffey

Abstract:


There is an increasing appreciation for the heterogeneous nature of extracellular vesicles (EVs). In addition, two nonvesicular extracellular nanoparticles (NVEPs), exomeres and supermeres, have been discovered recently that are enriched in many cargo previously ascribed to EVs. The EV field has largely focused on EV isolation and characterization, while studies on NVEPs are limited. At this juncture, it is critically important to have robust and reliable methods to separate distinct populations of EVs and NVEPs to assign cargo to their correct carrier. Here, we provide a comprehensive step-by-step protocol for sequential isolation of large and small EVs, nonvesicular fractions, exomeres and supermeres from the same starting material. We describe in detail the use of differential ultracentrifugation, filtration, concentration and high-resolution density-gradient fractionation to obtain purified fractions of distinct populations of EVs and NVEPs. This protocol allows assignment and enrichment of a biomolecule of interest to its specific extracellular compartment. Compared to other isolation methods, our protocol has unique advantages, including high purity and reproducibility, with minimal expertise required. The protocol can be applied to purification of EVs and NVEPs from cell culture medium and human plasma and requires ~72 h to complete. Adoption of this protocol will help translational investigators identify potential circulating biomarkers and therapeutic targets for a host of human diseases and allow basic scientists to better understand EV and NVEP biogenesis and function. Overall, this protocol will allow those interested in isolating EVs and extracellular particles to advance scientific inquiry to answer outstanding questions in the field..


Acknowledgements:

The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute, or the National Institute of Health.


The Translational and Basic Science Research in Early Lesions (TBEL) Research Consortia is supported and funded by grants from the National Cancer Institute and the National Institutes of Health under the following award numbers:


Project Number:

Awardee Organization

U54CA274374

Fred Hutchinson Cancer Center

U54CA274375

Houston Methodist Research Institute

U54CA274370

Johns Hopkins University

U54CA274371

UT MD Anderson Cancer Center

U54CA274367

Vanderbilt University Medical Center


Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
bottom of page